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Introduction
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Introduction to mantle convection & plate tectonics

» Mantle convection is the thermal
convection in the Earth's upper
~3000 km

> [t controls the thermal and
geological evolution of the Earth

» Solid rock in the mantle moves
like viscous incompressible fluid on
time scales of millions of years

Central open questions:

Continental Plate  Volcanic Line

Energy dissipation in hinge zones Rdge  Ocoapi g

Main drivers of plate motion:
negative buoyancy forces or
convective shear traction b = Forun

Role of slab geometries

> Accuracy of rheology
extrapolations from experiments
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Computational challenges of global-scale mantle flow

» Severe nonlinearity, heterogeneity,
and anisotropy of the Earth's
rheology with a wide range of spatial
scales

» Highly localized features with respect
to Earth's radius (~6371 km), like
plate thickness ~50 km and shearing
zones at plate boundaries ~5 km

> 6 orders of magnitude viscosity
contrast within ~5 km thin plate
boundaries

> Resolution down to ~1 km at plate boundaries (uniform mesh of Earth's
mantle would result in computationally prohibitive O(10'?) degrees of
freedom). Enabled by: adaptive mesh refinement

> Velocity approximation with high accuracy and local mass conservation.
Enabled by: high-order discretizations
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Mantle convection modeled as nonlinear Stokes flow

Rock in the mantle moves like a viscous, incompressible fluid (over
millions of years) and can be modeled as a nonlinear Stokes system:

—V - [T, w) (Vu+ Vul)| + Vp = £(T)
V-u=0
The viscosity 1 depends exponentially on the temperature, on a power of

the second invariant of the strain rate tensor, incorporates plastic yielding
and lower/upper bounds:

Tyield

w(T,u) = max <,umin, min (Qé(u) , Wmin (Nmax’ a(T) 5(")177))>
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Mantle convection modeled as nonlinear Stokes flow

Rock in the mantle moves like a viscous, incompressible fluid (over
millions of years) and can be modeled as a nonlinear Stokes system:
—V - [T, w) (Vu+ Vul)| + Vp = £(T)
V-u=0
The viscosity 1 depends exponentially on the temperature, on a power of

the second invariant of the strain rate tensor, incorporates plastic yielding
and lower/upper bounds:

. Tyield . . 1-n
(T ) = mae (i i (Q;I;U) wmin (i o T) (w)'F) )
The Newton update (@, p) is computed as the inexact solution of:

T T
o [(Mlﬂ,ag(wquﬁ )®(Vu42-Vu )
e [(Vu+ VuT)[

) (Va+ fo)] + VP = —Tmom

V-u= —Tmass
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Methods & Algorithms
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Solving the discretized Stokes system

Finite element discretization:
» High-order, inf-sup stable velocity-pressure pairings: Qj x P%i_scl

» Local mass conservation at the element level, discont. pressure
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Solving the discretized Stokes system

Finite element discretization:
» High-order, inf-sup stable velocity-pressure pairings: Qj x IP’di_Scl
» Local mass conservation at the element level, discont. pressure
Coupled iterative solver with upper triangular block preconditioning:

s ][5 b6

Stokes operator preconditioner

Requires: (i) approx. inverse of the viscous stress block, A lx Al
(ii) approx. inverse of the Schur complement, S™' ~ (BA~!BT)~!
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Solving the discretized Stokes system
Finite element discretization:
» High-order, inf-sup stable velocity-pressure pairings: Qj x IP’di_Scl
» Local mass conservation at the element level, discont. pressure
Coupled iterative solver with upper triangular block preconditioning:

s ][5 b6

Stokes operator preconditioner

Requires: (i) approx. inverse of the viscous stress block, A lx Al
(ii) approx. inverse of the Schur complement, S™' ~ (BA~!BT)~!

BFBT / Least Squares Commutator (LSC) method:
S'=®BD'B')"(BD'AD'B")(BD'B')"

with diagonal scaling, D! := diag(A)~'.
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Comparison to state of the art for unstructured meshes

Solve Au=1f

——GMG_4.0km | ] 4.0 km

GMG_1.5km
——GMG_0.7km |
. - - - AMG_4.0km
v AMG_1.5km

\ - - -AMG_0.7km

1.5 km

Residual reduction

0.7 km

100 200 300
GMRES iteration

Solve Stokes system

§ 10° - ——GMG_BFBT_4.0km
-2 e restart GMG_BFBT_1.5km
31072 FEEEEFSISG ——GMG_BFBT_0.7km
= - - -AMG_mass_4.0km
3104 AMG_mass_1.5km
@ - - -AMG_mass_0.7km
o -6
10 0 100 200 300

GMRES iteration
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Review: BFBT/LSC methods for Schur complement S~
BFBT method [Elman, 1999]: pseudoinverse

S'=BA'B")"=(BB") " (BAB")(BB")!

Least Squares Commutators (LSC) [Elman, et al., 2006]:
Find commutator matrix X s.t. (ABT — BT X) ~ 0, by solving the least
squares problem:

Find columns x; of X s.t. min
Xj

= X=(BB'")(BAB")
(AB"T-B'X)~0 = (BA"'B")"'~ (BB")"/(BAB")(BB')!

][ABT]j - BijHz

LSC gives same result for S as pseudoinverse.

Q: Does this work for FE discretizations?. ..
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Review: BFBT/LSC methods for Schur complement S~
BFBT method [Elman, 1999]: pseudoinverse

S'=BA'B")"=(BB") " (BAB")(BB")!

Least Squares Commutators (LSC) [Elman, et al., 2006]:
Find commutator matrix X s.t. (ABT — BT X) ~ 0, by solving the least
squares problem:

Find columns x; of X s.t. min
Xj

= X=(BB'")(BAB")
(AB"T-B'X)~0 = (BA"'B")"'~ (BB")"/(BAB")(BB')!

][ABT]j - BijHz

LSC gives same result for S as pseudoinverse.

Q: Does this work for FE discretizations?. .. no
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Review: BFBT/LSC methods for Schur complement S~
Diagonally scaled BFBT method [Elman, et al., 2006]:

M2 AMG BT - My BTy

Find columns x; of X s.t. min
X

= X=BM;'B")'(BM'AM;'B")
= S7'=BM;'B")"YBM;'AM;'B")(BM;'B")"!

Proposed scaling: For FE, use “diagonalized” velocity mass matrix,

diagonal: M; = My = diag(M,,) or lumped: M; = My = M,,

Since BMleT can be understood as a Laplace operator for the
pressure, approximate (BM;'BT)~! by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?. ..
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Review: BFBT/LSC methods for Schur complement S~
Diagonally scaled BFBT method [Elman, et al., 2006]:

M2 AMG BT - My BTy

Find columns x; of X s.t. min
X

= X=BM;'B")'(BM'AM;'B")
= S7'=BM;'B")"YBM;'AM;'B")(BM;'B")"!

Proposed scaling: For FE, use “diagonalized” velocity mass matrix,

diagonal: M; = My = diag(M,,) or lumped: M; = My = M,,

Since BMleT can be understood as a Laplace operator for the
pressure, approximate (BM;'BT)~! by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?. .. no
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Review: BFBT/LSC methods for Schur complement S~

BFBT for scaled Stokes systems that arise in geodynamics
[May, Moresi, 2008]:

D, o |[a BT|[D,'* o
0 D;1/2 B o0 0 D;1/2
Then the standard BFBT method yields its scaled version,
= S !'=@BD,;'B") " (BD,'AD,'B")(BD,'B") !

Proposed scaling: heuristic, motivated by scaling of dimensional systems

)

[Dulii = max [[A]i4]

Q: Is BFBT with this scaling effective for high viscosity variations?. ..
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Review: BFBT/LSC methods for Schur complement S~

BFBT for scaled Stokes systems that arise in geodynamics
[May, Moresi, 2008]:

D, o |[a BT|[D,'* o
0 D;1/2 B o0 0 D;1/2
Then the standard BFBT method yields its scaled version,
= S !'=@BD,;'B") " (BD,'AD,'B")(BD,'B") !

Proposed scaling: heuristic, motivated by scaling of dimensional systems

)

[Dulii = max [[A]i4]

Q: Is BFBT with this scaling effective for high viscosity variations?. .. yes
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New view on BFBT/LSC methods (1)

Let C be symm. pos. def. and let D be arbitrary,

- . AT T 2 )
Find X s.t. min|AD™'BTe; ~ B Xej|| | for all j
X c-!
= X=(BC'B") " Y(BC!AD'B")
And we have a C~!-orthogonal projection, i.e., the residual satisfies
<BTeZ-, (AD'BT — BTX)ej> —0 forall 4,7,

Cfl
therefore

(AD"'B" -B'X)e; Lc-+ Ran(B') forall j
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New view on BFBT/LSC methods (2)

Goal: Effective and robust preconditioning of the Schur complement in
Stokes systems with high viscosity variations

Note: Condition for optimal preconditioning (BA~'BT)S~! = 1.

By choosing C = A, we obtain equivalence between orthogonality and
the condition for optimal preconditioning:

<BTei, (AD'BT — BTX)ej>A71 =0 Vi,j < S=BA'BT
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New view on BFBT/LSC methods (2)

Goal: Effective and robust preconditioning of the Schur complement in
Stokes systems with high viscosity variations

Note: Condition for optimal preconditioning (BA'BT)S"! =1.
By choosing C = A, we obtain equivalence between orthogonality and
the condition for optimal preconditioning:

<BTe¢, (AD'BT — BTX)ej>A71 =0 Vi,j < S=BA'BT

Choices of C, D that are computationally feasible are limited.
Our choice: C =D := diag(A), thus

S'=@BD!'B")(BD!'AD'B")(BD 'B")!
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Parallel geometric multigrid (GMG)

MG hierarchy: Viscous Stress MG hierarchy: Pressure Poisson

‘ discont. modal pressure space ‘

. cont. nodal function space / .
p-coarsening ﬁ P high-order F.E.

geometric geometric trilinear F.E.
h-coarsening h-GMG h-coarsening decreasing #cores
algebraic AMG algebraic small #cores and
coars. coars. / small MPl communicator

i single core

Accurate high-order L?-projection operators for restriction and
interpolation during V-cycles, and for coarsening of the viscosity

Coarsening of full fourth-order tensor coefficient of Jacobian

v

v

v

Chebyshev accelerated point-Jacobi smoothers

v

Velocity null spaces are projected out to establish stable convergence
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h-dependence of GMG components & Stokes precond.

12 norm of
||residuall| / ||init residuall|
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0

‘Solvet Au = f

Solve
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GMRES iteration

10°

200

||[residuall| / ||init residuall|

——pressure_DOF_0.9M | |
——pressure_DOF_2.6M
——pressure_DOF_6.3M

>

250

100 150 200
GMRES iteration
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Solve Stokes system
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GMRES iteration

200

250



“Parallel, Robust GMG for Adaptive High-Order Meshes and Stokes Flow of Earth’s Mantle” by Johann Rudi

p-dependence of GMG components & Stokes precond.

Solve Au=f Solve (BD'B")p=g

100 —a —P1
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GMRES iteration GMRES iteration

Solve Stokes system

) —Q2-P1| ]
T —Q3-P2
3 ——Q4-P3
S8 ——Q5-P4
€=
SE
c=
o=
AL
S
S
@
[
=10°
0 50 100 150 200 250

GMRES iteration
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Computational results using real Earth data
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Computational results: Solver Robustness

Robustness of linear Stokes solver w.r.t. plate boundary thickness

Plate boundary  DOF GMRES #iter GMRES #iter
thickness (km) for solving Au=1f  for solving Stokes
15 1.16B 115 461
10 1.41B 129 488
5 3.01B 123 445

Robustness of inexact Newton-Krylov nonlinear solver w.r.t plate boundary thickness

Plate boundary DOF Newton GMRES #iter
thickness (km)  (at nl. solution)  #steps  (for all Newton steps)

15 1.00B 25 3915
10 1.63B 27 4645
5 4.78B 29 6112
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Computational results: Algorithmic scalability

(Fix problem parameters and refine the mesh)

Algorithmic scalability of linear and nonlinear solver

QL)

g

= - T ]
9 r | s jlea| =@= |in. solver =@= nl. solver | a
4

S 10°%E =
(@) = =
~ C ]
é - .
s / 3
[ - .
) = .
o r ]
c [ .
g —4 | | |

m 10 1B 2B 4B

Degrees of freedom
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Computational results: Weak scalability

(Increase core count and problem size simultaneously)

=B Code scalability i
= === Ideal scalability |

Tt |

Billions of DOF / seconds per GMRES iteration

P e
—’/’EM/
- e 0.87.
e v
/‘%
=
L
8192 16384 32768 65536 131072 262144 458752

Number of Blue Gene/Q cores
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56
—8— Code speedup
32 = Ideal speedup |
16
(=%
2 8|
é P =
[72) s

Computational results: Strong scalability

(Increase core count while problem size stays fixed)

65536 131072 262144 458752

16384 32768
Number of Blue Gene/Q cores
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Computational results: Contribution to science

Effective viscosity at nonlinear Normal stress at the surface and
solution and surface velocity surface velocity
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Summary of key contributions

Parallel geometric multigrid for
the viscous stress block on
adaptive meshes (my impl.;
based on AMG-only solver and
parallel AMR library)

p- and h-independent multigrid
convergence through
improvement of projection
operators (my dev.)

Stable convergence in presence
of rotation null spaces (my dev.)

Stable coarsening of anisotropic
fourth-order tensor coefficient in
Jacobian (my dev.)

>

Geometric multigrid based BFBT;
first matrix-free implementation of
BFBT (my dev.)

Inexact Newton-Krylov for complex
Earth rheology with dynamic mesh
refinement (my impl.; ideas in
collaboration with G. Stadler)

Parallel optimizations, e.g., MPI
communicator reduction, OpenMP
threading (my impl.)

Parallel scalability on full system
JUQUEEN supercomputer with
458,752 CPU cores (lead dev. in
collaboration with IBM Research —
Ziirich)
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